08.04.2016

Fintech AI Revenue to Grow 960% by 2021, Driven by Big Data, Distributed Computing & Connectivity

08.04.2016

PRNewswire – BASINGSTOKE, England – Juniper Research has found that Fintech platform revenues for unsecured consumer loans issued using machine learning technology are set to see a jump of 960% during the period 2016-2021, rising to $17 billion globally in the latter forecast year. This rise is driven by advances in analytics and accessible computing power.

The new study, AI & Machine Learning: Fintech Dynamics, Disruption & Future Opportunities 2016-2021 found that machine learning spend in Fintech will advance rapidly, owing to the highly data-driven nature of the market, meaning that AI integration is likely to spell substantial benefits.

Machine learning; a subset of AI; has seen a tremendous leap in activity since 2011, with substantial increases in VC and R&D investment. For example, 2 Fintech start-ups, Kabbage and ZestFinance, have collectively raised $500 million in funding alone. Meanwhile vendors analysed in Juniper’s research have spent a total of $83 billion in R&D during 2015. Each of these vendors names AI as a part of core strategy.

AI Becomes Affordable

Until recently, machine learning was too expensive and computationally time-intensive to break into the mainstream. Meanwhile access to extensive data sets for algorithm training were limited.

Presently, the ability to use GPU (graphics processing unit) hardware for processing massive and highly available data sets, along with unlimited affordable computing power in the form of distributed architecture has opened the market to a swathe of disruptive new players.

Risk Assessment Driving AI Spend

AI is particularly useful for risk-assessment purposes, where variables from numerous financial and non-financial datapoints are assessed by algorithms to approve loans. This widens the addressable market for financial institutions considerably over traditional FICO credit scoring, where lack of credit history may mean loan rejection despite a real low risk for the lender.

Where Big Data analytics offered retrospective business intelligence, machine learning offers predictive and even prescriptive capabilities,” noted research author Steffen Sorrell. Data is key and industries able to draw expertise from data scientists will be the first to capitalise on the AI opportunity.

The whitepaper, Fintech AI ~ A New Kind of Trader, is available to download from the Juniper website together with further details of the full research.

Juniper Research provides research and analytical services to the global hi-tech communications sector, providing consultancy, analyst reports and industry commentary.

It's been a month since we had our Women In Finance Awards in New York City at the Plaza! Take a look back tab some moments, and nominate for our upcoming awards in Mexico City and Singapore here: https://www.marketsmedia.com/category/events/

4

Citadel Securities told the SEC that trading tokenized equities should remain under existing market rules, a position that drew responses from various crypto industry groups. @ShannyBasar for @MarketsMedia:

SEC Commissioner Mark Uyeda argued that private assets belong in retirement plans, saying diversified alts can improve risk-adjusted returns and that the answer to optimal exposure “is not zero.” @ShannyBasar reporting for @MarketsMedia:

COO of the Year Award winner! 🏆
Discover how Jennifer Kaiser of Marex earned the 2025 Women in Finance COO of the Year recognition.

Load More

Related articles

  1. Market participants get greater transparency across the post-trade value chain ahead of T+1.

  2. Buy-Side Economics Keeps Broker Commissions Flat

    Rapidly changing inflation has become a challenge for economies and investors.

  3. The collaboration will allow EuroCTP to validate its data quality control designs.

  4. Aim is to bring clarity to the cost of trading and clearing listed derivatives.

  5. The bank's entire business will gain access to suite of financial data products from SIX.